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Exact solutions are obtained for the problem of the thermal slip of an inhomogeneously heated gas along a 

plane surface in a half-space. Two classes o/the model kinetic Boltzmann equations are applied: the equation 

with a collision operator in the BGK (Bhatnagar, Gross, and Krook) form and in the form of an ellipsoidal- 

statistical model (this equation is constructed for the first time). The collision frequency in both models is 

proportional to the velocity of molecules. The results of numerical calculations are presented. 

Kinetic equations are generally applied with a constant frequency of collisions. However, the hypothesis  

that the frequency of the collisions of molecules is independent  of their velocity is a substantial simplification. For 

real gases, the frequency of collisions is a ra ther  complicated function of the velocity of molecules. The  assumption 

on the constancy of the free-path length of molecules (at least for those whose interaction can be approximated by 

a model of solid spheres) seems to be more realistic. This assumption is equivalent to the hypothesis  that the 

frequency of collisions of molecules is proportional to their velocity. 

In the present  work, to solve the problem of determining the thermal slip velocity, for the first t ime we 

construct the Boltzmann linearized equation with a collision operator  in the form of an ellipsoidal-statistical model 

with frequency proportional to the velocity of molecules (the ES-equation).  An exact solution of this problem is 

obtained. As a particular case, from this we derive the solution of this problem for the BGK-equation of Boltzmann. 

It is precisely this model that was already used for solving the Smolukhovskii problem of a temperature  jump and 

other problems [1-5]. However, the BGK-model possesses a well-known drawback, i.e., it leads to the wrong 

Prandtl  number: Pr  = 1. The  ES-equation, which is constructed here  for the first time, gives the true Prandt l  

number: Pr = 2/3.  More precisely, in this case we construct a set of equations with a parameter  that is l inearly 

related to the Prandtl  number,  and develop a method of constructing exact solutions for this set of equations. 

We recall that the thermal slip of a gas is the motion of a gas along a surface that is caused by a tempera ture  

gradient [6 ]. The  s tudy of thermal slip applying equations with a constant  frequency of collisions is the concern of 

an extensive l i terature (see [1, 7 ] and references therein).  Thus,  in [7 ], the thermal-slip velocity was de termined  

on the basis of the BGK-equation with a constant frequency of collisions, while in [8 ] this was done on the basis 

of the Boltzmann model equation with a collision operator  of mixed type,  suggested by Shakhov in [9 I. 

Suppose in the half-space x > 0 filled with a monoatomic gas there  is a l inear temperature  gradient  far  

from the wall. Let us introduce a Cartesian coordinate system with the center on the surface, with the x axis 

perpendicular to the surface, and with the y axis directed along the gas motion. We are to find the slip velocity of 

the gas caused by the temperature gradient. 

First, we construct  the ES-equation with a constant collision frequency for the given problem. For a 

stationary case, the BGK-equation can be written in the form 

Of + vy df 
Vx O--x ~y = v (feq - f ) ,  (1) 

where 
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/'eq = " ~--~ exp - 2~T [v2x + (Vy - u*) 2 + vz z ] . 

We limit ourselves to a slow (compared to the speed of sound) motion of the gas and to small gradients. In this 

case, the problem admits linearization: 

f = fo  ( l  + ~o) , 

where 

feq = fo [ 1 + KTY (C 2 -- 5/2)  + 2CyU (X) ], 

( m  l 3/2 (l~y) 
• f o = n o  ~ - - ~ 0 )  e x p ( - c 2 ) ,  K T= 0 7 "  x=®' 

~,1/2 ~1/2 
C =pO v,  u(x)  =pO u*(x) ,  flO= m/(2kTo)" 

Here, for the function ,p Eq. (1) has the form 

CxOo-~x "-I-cyOo-~y =v [KTY (c2--5) +2CyU(X)--~] . (2,  

Equation (2) should satisfy conservation laws. The only nontrivial conservation law in the given problem is the law 

of conservation of momentum. From this law it follows that 

f v [2Cy u (x) -- ~p l Cy exp ( -  c 2) d3c = 0 (3) 

(the integration extends over the entire space of velocities). When v = const, Eq. (3) yields 

- 3 / 2  u (x) = n f ~o (x, y, c) Cy exp ( -  c 2) d3c, (4) 

which corresponds to the usual determinat ion of the mass velocity of the gas. 

The r ight-hand side of Eq. (2) can be considered as the first terms in the expansion of the l inearized 

collision integral into polynomials of velocity. Considering the next moment of the distr ibution function and 

assuming that 

~o = h ( x , c )  + K T y - - Cy c 2 
v 3 v % v  

- -  K T Cy ,  

we obtain the equation 

Oh 
Cx O--x = v [2CyU (x) + bcxcyPxy (x) - h l ,  (5) 

where 

- 3 / 2  Pxy (x) = zE f h (x, c) CxCy exp ( -  c 2) d3c , 

and the number  b is the parameter  connected with the Prandtl  number  by the relation Pr = 8 / 9  + 5 /6v~b .  
We will consider now the case where the frequency is proportional to the absolute value of the velocity of 

molecules, i.e., v = voc. In this case, the general form (Eq. (5)) of the BGK-equation is retained,  but, according to 

Eqs. (3) and (4), now we have 
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3 u (x )  = ~  f h ( x ,C)  C y C e X p ( - c  2) d3c. 

Correspondingly, the ES-equation can be written in the form 

Oh 
Cx 7x = VoC [2Cy u (x) + bcxcy Pxy (x) - h ], 

where 

moreover, in the given problem h(oo, c) = 0. 

Representing the function h as h = cyg,(x, c), we obtain the equation 

or/ 
Cx -~x = v°c [2u (x) + bcxPxy (x) - g, l, 

in which 

Pxy (x) = f h (x, c) CxCyC exp ( -  c 2) d3c. 

We will assume that the molecules are reflected from the wall in a purely diffuse manner; then 

+ 2KTCy 
, C x > 0 ;  

3 v'~-v o 

3 2 u (x) -- ~-~ f ~p (x, c) Cy exp ( -  c 2) d3c, 

Pxy (x) = f ~p (x, c) CxC~C exp (-- c 2) d3c. 

We now pass to a spherical coordinate system in the space of velocities, introducing a polar axis along Cx 
and assuming that/L = cos 0 = Cx/C. In the last two integrals, we perform integration over a polar angle and replacing 

again vox by x and KT/VO by K T, we obtain the equation 

0 /~ ~-~ V' (x, ~,, c) + ,p (x, ~, c) = 

3 .~ 5 2 1 2 
c' exp ( -  c' ) dc' f (1 - / ~ '  ) (1 + flpc~'c') g, (x, p ,  c') dl~', (6) 

= 4  o -1 

in which 

8 8 25 p 
/ 3 = ~ : r b ,  P r = ~ +  32 ( 5 -  3/3)" 

If we seek the solution of Eq. (6) in the form 

then we obtain the following set of three equations. 

O~'l 3 1 2 , 
/' -b-Tx +~'~ (x, ~,) = ~ f (1 - ~ '  ) Ig,~ (x ,~ ' )  + 5,~,2(x,~ ) + 

-1 
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+ (No + 5aNl + 2c0~3 (x, At')]dAt', 

I 2 
At -~ x  dr/2 + g'2 (x, At) = ~-3 5aflAt f At' (1 - At' ) [~1 (x, At') + 3~2 (x, At') + 

-1 

+ (5aN 0 + 3N I + 1) ~P3 (x, At') ] dAt', 

awa 3 
At -~-x--x + ~3 (x, At') = 0 ,  a = ]-~ v~-.  

We will select the numbers  NO and Nl so that the following equations are satisfied: 

N o + 5 a N  l + 2 a = 0  and 5aN o + 3 N  I + 1 = 0 .  

Then,  the function g'3(x, At) drops out of the first two equations, whereas the third equation does not make a 
contribution to the slip velocity. We will write the first two equations in vector form: 

At _O__x qj (x, At ) a  -t- qs (x, At) = ~3 fl (1 - At'2) g ~ ,  At') qJ (x, At') aAt', (7) 
-1 

where 

q J =  [~Ol] ' ~ 2  KQt'At ')=Ko+flAtAt 'KI'  

The  boundary  conditions for Eq. (7), formulated previously for h, have the form 

qJ(0, A t ) = ~  o ,  O < p <  1; (8) 

where 

q J0 = 

2uo+(2 
3v'~- 2 

I + ~ N ]  K T 

KT 

Further ,  we will assume that KT = 1, so that uo is the desired coefficient of the thermal  slip velocity. 
Separating the variables 

qJ , (x ,  A t ) = e x p ( - ~ )  ~(r/ ,At)  

after certain t ransformations reduces Eq. (7) to the characteristic equation: 

3 

(9) 

(~o) 
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where 

1 
n(r / )  = f ( 1 - / ~ 2 )  • (r/,/x) d/x, ( l l )  

-1 

2 
a ( x ) =  , c = 3 - 7  

Let r / E  ( - 1 ;  1). Then  from Eqs. (10) and (11) in the space of generalized functions (see [10p  we find 

the eigenvectors of the continuous spectrum 

(,7, ~,) = F ( ,1, /~) n ( q ) ,  

where 

3 1 F (r/,/~) = ~- rlA (,ur/) P 
r / - / ~  

+ ( I  - ,12) -1  A (,7) 6 ('1 - l , )  ; 

3 1 

- 1  

is the dispersion matrix; the symbol Px -1 denotes the distribution, i.e., the principal value of the integral of x--I; 

6(x) is the delta-function. 

We find the dispersion function of the problem ~(z) = det A(z): 

;t (~) = n~  (z) f2 2 ( z ) ,  

where 

1 ) Tdc , 
f~t (z) = -- ~I + 23 (1 -- Z 2 ) ~ c ( z ) ,  f~2(z) = 1 + C3Z 2~h (z)', ;t c (z) = ~ z -- z ' 

- I  

,tc(z ) is the Keyes dispersion function. 

We note that the function 2 (z) has the double zero at the point z -- oo. Two characteristic solutions of Eq. 

(7) correspond to this zero: 

W (t) (x,/~) = and ~(2) (x,/~) = - b/~ 5 - 3//" 

By applying the principle of argument (see [111), we can show that ;t(z) has no other  zeros. 

We will show that the boundary-value problem (7)-(9) has a solution representable  in the form of expansion 

in the eigenvectors of characteristic Eq. (10): 

qJ (x,/~) = f exp - F (~1,/~) a (r/) d q ,  
0 

(12) 

where a(r/) is the unknown vector-function with the elements al (r/) and a2(r/). 

Using the boundary conditions, we will go over from expansion (12) to the singular integral equation with 

the Cauchy kernel: 

- W 0 + ~ -  f rlA(~r}) a(rl)  t / _ / i  + (1 - / t 2 )  - A ( / , ) a ~ )  = , 0 < ~  < 1.  (13) 
0 
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We will introduce the auxiliary vector-function 

[ N , ( z ) ]  ' dr/ (14) 
N(z)  = N2(z) = f 'TA('Tz) a('7) - o r / - z  

Using Sokhotskii's formulas [11] for N(z) and B(z) = A(z)A-l(z2),  we transform Eq. (13) to the 

Riemann-  Hilbert vector boundary-value problem: 

B + ~ )  IN + ~ ) - W 0 ] =  B-  (/z) IN- ~ ) -  W0], 0 < #  < 1. (15) 

For this, we will first solve the corresponding factorization problem 

B + ~ ) X  +(~)  = B - ( / z )  X - ( u ) ,  0 < / ~  < I .  (16) 

The solution of problem (16) will be sought in the form of X(z) = SU(z)S - l ,  where U = diag {Ul, U2} is the new 

unknown matrix, whereas the matrix S reduces the matrix B(z) to a diagonal form, i.e., 

S -I  B (z) S = Q (z) = diag {Q1 (z), f12 (z)}. 

Substituting X(z) into Eq. (16), we obtain the matrix boundary-value problem, which is equivalent to two 

scalar problems: 

+ + ~a (u) U,~ ~)=Q-a (u)US ~), a = l , 2 ,  O < p <  1. 

Investigating the properties of the functions f2 + ~ ) ,  a = 1, 2, we obtain the solutions, limited at the etad 

points of the integration interval: 

U a (z) = z xa exp [ -  V a (z) l, 

where 

1 l 
V a(z) =-~ f 10 a ~ ) - x a , ~ l  d ~  x I = 1 x 2 = 0 "  

T Z ' ' ' 
0 

+ 

0 a (r) = arg g2 a (r) 

are the principal values of the arguments. 
Thus, the matrix X(z) is constructed and has the form 

X ( z ) =  [U' ( z )  7 [ U l ( z ) - U 2 ( z ) ]  1 
U 2 (z) 

Now, we transform problem (15) by using factorization (16) and obtain 

IX + ~ ) ] - 1  IN + ( ~ ) _ W 0  ] =  [X-( ,u)]  -1 [ N - ( ~ ) - T 0 ] ,  0 < p  < 1. (17) 

Taking into account the behavior of the matrices and vectors entering into Eq. (17), we find a general solution of 

this problem: 

N(z) = q/0 + X(z) do , 
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where co and do are  a rb i t ra ry  constants.  

In order  that  solution (18) could be taken as the auxil iary function N(z) ,  defined by equality (14), we will 

el iminate the pole in the function N1 (z) at the point z = oo and make it vanishing at this point. Then  we equate  the 

limits of the function N2(z) at the point z = oo. After this we obtain 

c o = _ yd 0 , 

1 5 1 (19 )  
u o - + - N O - _ yd o , 

3v 'Y  4 2 

t 5 (20) 
- cfl f 112a 2(11) dr/ = 1 + ~ N  I + d  o . 

0 

By applying the Sokhotskii formula [11 l to the function N(z),  def ined by equality (18), we find the 

coefficient of the continuous spectrum a(11): 

it01 2xirla(11)=A 1 (112 ) IX + (11)_X-(11)1  do 

Now, equality (20) yields the coefficient 

(5 )  
d o = -  I + ~ N  1 ( I + I o )  -~ , 

where 

1 

1 f i u  + (11) _ v -  (11) 1 av 1 o -  2a~i o r/ 

Using a technique of contour integration, we obtain that Io = U2(0) - 1. To calculate U 2 ( 0 )  , w e  make  use 

of the factorization 

o 2 (~) = c/3 o 2 (oo) 2 uz (~) uz ( -  ~) .  

This formula is derived either directly or by the same method that  was used in [ 12, p. 149 ]. From the lat ter  equali ty 

we find that 

1 ) - 1 / 2  
u 2  (0)  = 1 - ~ c / 3  

Now, all the free parameters  of solution (18) are determined,  including the coefficient of the thermal  slip 

velocity (see formula (19)): 

1 7 I o 
u 0 - - -  (21) 

3v%- 4 (3 _ y 2 )  1 + I 0 

The  validity of expansion (12) is established,  since the coefficient of the continuous spect rum a(11) is found 

uniquely. 

We note that when fl --- 0, Eq. (6) and ,  consequently,  Eq. (7) go over into the corresponding BGK-equat ion  

(see, for example ,  [ I ,  5]) .  From the expression for U2(0), it is evident that U2(0) = 1 at /3 = 0, consequent ly ,  I o = 

0; therefore,  from formula (21) we have 
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1 
u 0 - , (22) 

3v'-d 

It remains to go over to dimensional quantities. The true velocity of thermal slip is calculated from the 

formula 

Vsl = VKTs I - -  , 
X ~  

where v is the kinematic viscosity, KTsl = ( 5 v ~ / 3 P r ) u o ,  with the value of u0 being determined according to Eq. 

(21) for the ES-model and according to Eq. (22) for the BGK-model. Numerical calculations show that KTs I = 

0.94677 for the ES-model and Krsl = 0.83333 for the BGK-model. 
We will note for comparison that the exact value of the thermal-slip coefficient, obtained in [13] by 

numerical methods on the basis of the total Boltzmann equation, is equal to K(79) = 1.00867. For the BGK-model 

with constant collision frequency [7 ], this coefficient is equal to KTst = 1.149, which is higher by 14% than K ~ .  

The ES-model with a constant frequency gives the same result as the BGK-model. It follows from the aforegoing 

that the result obtained for Krsl by using the BGK-model with the collision frequency proportional to the absolute 

value of velocity differs from K~] by 17.5%, whereas that obtained by using the corresponding ES-model differs 

only by 6.1%. Thus, account for the dependence of the collision frequency on velocity in the ES-model makes it 

possible to increase the accuracy of the description of thermal slip by more than two times. 
In conclusion, it should be noted that in addition to solving a specific physical problem in the present work, 

we continue to develop a method for solving boundary-value problems of the kinetic theory in the form of expansion 

into generalized singular eigenvectors of a corresponding characteristic equation. The expansion of the solution 

sought is reduced to solving the Riemann-Hilbert  vector boundary-value problem. The corresponding homogeneous 

problem is considered (factorization of its coefficient). By diagonalizing the coefficient, the problem is reduced to 

two scalar boundary-value problems, whose solution has already been found by standard methods [I 1 I. The 

solvability conditions allow one to determine all the free solution parameters uniquely, whereas from the Sokhotskii 
formulas for the difference of the boundary values of solution, one can uniquely derive the coefficient of a continuous 

spectrum. Thus, the validity of the expansion of the solution into eigenvectors is established. 

In recent years, the method described made it possible to obtain a series of significant results in the kinetic 

theory (see, for example, [14-18 ]). The method developed can be used for solving various problems arising in 

interaction of a gas and plasma with a surface. 

N O T A T I O N  

f, distribution function; m, mass of a molecule; T, temperature; n, concentration; v, velocity of molecules; 
u ( x ) ,  mass velocity of the gas; k, Boltzmann constant; v, frequency of collisions; feq, equilibrium distribution 

function; KT,  logarithmic gradient of temperature; KTsl, coefficient of thermal slip velocity. 
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